
1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

</
/>

Machine Learning at
Scale

Jafar Isbarov
Mirakram Aghalarov

Speakers

About Us

Mirakram Aghalarov Jafar Isbarov

• Lead Machine Learning Engineer
@PRODATA

• Lecturer of AI&ML courses at BHOS

• PhD Candidate focusing Computer
Vision at BHOS

• MSc Data Science and Engineering
from Politecnico Di Torino

• Former Deep Learning Engineer at
AIKO

• Lead Machine Learning Engineer
@PRODATA

• MSc Computer Science student at
George Washington University

• MSc Data Analytics student at
ADA University

• Former Machine Learning Engineer
at Azerbaijan AI Lab

Agenda

{02}

{01}

{03}

Large Models: Training and Inference

Deep Learning on Edge Devices

ML on-cloud vs. on-premise

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Working with
large models |1

</Issues with large models

● Training
○ Doesn't fit into a single GPU
○ Training takes too long

● Ops
○ Experiment tracking
○ Data lineage
○ Storage & backup

● Deployment
○ Inference with CPU can be too slow
○ Batch size too small

</Training large models

Optimizer state WeightsGradients

Memory usage during training

Memory usage:
Weights
Gradients
Optimizer state

Training time:
Batch size
Time per step
Dataset size

</Data parallelism

Model Model Model

Batch 1 Batch 2 Batch 3

Dataset

</Model parallelism

Embedder Encoder Decoder

Dataset Dataset Dataset

</Model parallelism

F

F

F

F B

B

B

B

Update

Update

Update

Update

Time

G
P

U
s

</Pipeline parallelism

Time

G
P

U
s

F0,0

Update

Update

Update

UpdateF0,1

F1,0

F0,2

F1,1

F2,0

F0,3

F1,2

F2,1

F3,0

F1,3

F2,2

F3,1

F2,3

F3,2 F3,3 B3,3 B3,2

B2,3

B1,3

B3,1

B2,2

B1,2

B3,0

B2,1

B0,3

B1,1

B2,0

B0,2

B1,0

B0,1 B0,0

</Large models in production

Single GPU, single node Multiple GPUs, single node Multiple GPUs, multiple nodes

Model Model Model

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Edge
Computing |2

Why Do We Need Edge Devices?

In 21st century, all
of us have ben
sorrounded with many

gadgets

Smartphone

Smart Watch

Laptops

Sensors

Characteristics of Edge Devices

Advantages

Privacy

Less Power Consumption

Portability

Cheaper

Disadvantages

Higher Latency

Constraints in RAM

Absence of GPU

Examples: Raspberry Pi, Nvidia Jetson, STM32

DL Optimization Methods for Edge

y = f(W*x + b)

x - Input Activation

y – Output Activation
W – Layer Weights
b – Bias
f() – Activation Function

DL Optimization Methods for Edge
y = f(W*x + b)

W * x requires O(NM) number of operations which is the major part of
computation

+b requires O(M) as same as f() activation function

Roofline Model

Roofline Model

ANN

CNN

Artificial Neural Networks with Fully Connected layers are memory bound. By increasing
weight re-use number of computations can be maximizable. Convolutional neural Networks are
compute bound. Which means that to maximize the performance, number of FLOPs should be
decreased

</Artificial Neural Network

= X = X

y W x nxy W nxx

Batch Size increase enables to multiply more than 1 input activation with the same input
weight.

Batch Size of 1 Batch Size of n

</Convolutional Neural Networks

Re-use

Weights
Keeps the weights
stationary and

“slides” over the
input Feature map

IFmap
Loads each input

once and applies all
filter weights

What about Energy?

Operation nJ per operation
Register 0.45

L1 0.88

L2 7.72

Mem w Prefetch 52.14

Mem w/o Prefetch 232.62

Write to Mem 62.1

Each access to memory requires
100x more energy than instruction
using only register.

Therefore, Data and Weight Re-use
increases the efficiency in power-
critical applications.

Reality

Registers can seem faster and effective while the data stored at given time is quite
small and management of the data becomes hefty work. For CNN weight reuse are more

common depending on the parameters of the network and underlying hardware

</Convolutional Neural Networks
As we said, Convolutional Neural networks are mainly compute-bound due to the
number of FLOPs for each iteration. Therefore, it is not enough to maximize the
batch size and weight re-use, but we need to decrease the number of FLOPs.

Input
Activation

Output
Activation

Standard Convolution: K*K*Cin*Cout per location.

If we have 3x3 Kernel with 32 input channels to be extracted to 64 output

channels:

3*3*32*64 = 18432

Which means we will have 18k operations for Standard Convolution!

64x3x3 Convolution

</Convolutional Neural Networks
In order to decrease amount of FLOPs in CNNs, Efficient Convolutional Neural
Networks have been proposed with Depthwise Separable Convolutions. This concept
has been firstly introduced in MobileNets which were focused to be used in edge
device

Input
Activation

Output
Activation

DW: K*K*Cin per location.
PW: 1*1*Cin*Cout per location
Depthwise Seperable Convolutions: PW+DW

3*3*32 + 1*1*32*64 = 2336

Which is 7x less than Standard Convolutions

1x3x3 Convolution 64x1x1 ConvolutionIntermediate
Activation

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Quantization

Quantization

Quantization is a process of decrease in storage of variable by simply decreasing
the precision. This compromise results with quantization error which has
significancy depending on application.

Quantization

Smaller
Float

Formats
Custom
Data
Formats

Fixed-point
Integers

Going from 32-bit format into 8-bit format gives us benefit from both performance
and energy consumption in memory transfers. If underlying hardware supports,
smaller data formats are possible to be used.

Quantization

Considering the underlying hardware in
microcontrollers, it is common to see integer
(fixed/dynamic precision) quantization types.

The main reason is that most of the
microcontrollers does not have floating point
unit for float computation.

8-bit Fixed Point Integers

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01
1 0 0 1 0

Shared
Exponent

Integer
Component
(Mantissa)

Sign

This is the method to represent the
float number with the help of shared
exponent ∆:

∆ = 0.05

X1 (int representation) = 35
X2 (int representation) = 13

X1 (Actual value) = 35 * 0.05 = 1.75
X2 (Actual value) = 13 * 0.05 = 0.65

16 bit mini-float (half-precision)

They are generally used in servers

It keeps the floating-point architecture but
decreases the size

Some hardware like modern GPUs can natively use
this format.

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Pruning

Pruning

Pruning

Weights
Pruning
Exploits the

redundancy in Neural
Networks

Activation
Pruning

Small activations
set to zero

When is it Efficient?

Making the variable 0 (zero) can decrease the storage size if file is stored
in sparse format.

Sparse format does not decrease the amount of computation because it is
decompressed during inference.

Node based structured pruning helps to decrease the model occupation in GPU
and number of computation

{02}

{01}

{03}

</CSR and CSC format
Compressed Sparse

Row
Compressed Sparse

Column

Inverted version of CSR, Matrices
are scanned through the columns.

Matrices are scanned through
rows, while non-zero values and
corresponding indexes are saved

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01
1 0 1 1 0 0 1 01
1 0 1 1 0 0 1 01
1 0 1 1 0 0 1 01
1 0 1 1 0 0 1 01
1 0 1 1 0 0 1 01

</Structured Pruning

5 2 5 0 00
0 1 7 0 00
3 0 0 4 22
4 0 0 0 08
0 1 1 8 30
2 0 0 0 03

Structured Pruning considers underlying
hardware, removes groups of weight to speed up
the access to the registers and save the space
of operating memory.

Another approach is node-based pruning in which
larger group of weights are removed.

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Knowledge
Distillation

</Knowledge Distillation

Teacher Model
Student Model

Unlabelled Data

Pseudo-label Prediction

Transferring the knowledge to the smaller model
Adding natural regularization on overfitting
Generalizing the errors well on unseen data

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Cloud vs.
on-premise |3

</Why (not) cloud solutions?

● Readily scalable

● Out-of-box tools

● Lower maintenance cost

● (Usually) higher reliability

● Unmanaged cost increase

● Less customizable

● Higher latency

● Potential data privacy issues

</Why (not) on-premise solutions?

● More customizable

● Faster connections

● Easier to handle data privacy
issues

● Initial cost
○ Starting cost
○ Scaling cost

● Higher maintenance cost

● Reliability issues

● Not every service is available
on-premise
○ OpenAI API
○ GCD, Azure ML, etc.

</Best of two worlds

● Hybrid of cloud and on-premise
solutions

● Can be both a transitionary or a
long-term strategy

● Outsourcing ML infrastructure
while maintaining more
traditional components in-house

● Edge devices + cloud backend

</Federated learning

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Thank you

DevFest 2023
Baku, Azerbaijan

	Slide 1: Machine Learning at Scale
	Slide 2: About Us
	Slide 3: Agenda
	Slide 4: Working with large models
	Slide 5
	Slide 6: </Training large models
	Slide 7: </Data parallelism
	Slide 8: </Model parallelism
	Slide 9: </Model parallelism
	Slide 10: </Pipeline parallelism
	Slide 11: </Large models in production
	Slide 12: Edge Computing
	Slide 13: Why Do We Need Edge Devices?
	Slide 14: Characteristics of Edge Devices
	Slide 15: DL Optimization Methods for Edge
	Slide 16: DL Optimization Methods for Edge
	Slide 17
	Slide 18: </Artificial Neural Network
	Slide 19: </Convolutional Neural Networks
	Slide 20: What about Energy?
	Slide 21: Reality
	Slide 22: </Convolutional Neural Networks
	Slide 23: </Convolutional Neural Networks
	Slide 24: Quantization
	Slide 25
	Slide 26: Quantization
	Slide 27: Quantization
	Slide 28: 8-bit Fixed Point Integers
	Slide 29: 16 bit mini-float (half-precision)
	Slide 30: Pruning
	Slide 31: Pruning
	Slide 32: When is it Efficient?
	Slide 33: </CSR and CSC format
	Slide 34: </Structured Pruning
	Slide 35: Knowledge Distillation
	Slide 36: </Knowledge Distillation
	Slide 37: Cloud vs. on-premise
	Slide 38: </Why (not) cloud solutions?
	Slide 39: </Why (not) on-premise solutions?
	Slide 40: </Best of two worlds
	Slide 41: </Federated learning
	Slide 42: Thank you

