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Large Models: Training and Inference

Deep Learning on Edge Devices

ML on-cloud vs. on-premise
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</Issues with large models

● Training
○ Doesn't fit into a single GPU
○ Training takes too long

● Ops
○ Experiment tracking
○ Data lineage
○ Storage & backup

● Deployment
○ Inference with CPU can be too slow
○ Batch size too small



</Training large models

Optimizer state WeightsGradients

Memory usage during training

Memory usage:
Weights
Gradients
Optimizer state

Training time:
Batch size
Time per step
Dataset size



</Data parallelism

Model Model Model

Batch 1 Batch 2 Batch 3

Dataset



</Model parallelism

Embedder Encoder Decoder

Dataset Dataset Dataset



</Model parallelism
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</Pipeline parallelism
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</Large models in production

Single GPU, single node Multiple GPUs, single node Multiple GPUs, multiple nodes

Model Model Model
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Why Do We Need Edge Devices?

In 21st century, all 
of us have ben 
sorrounded with many 

gadgets

Smartphone

Smart Watch

Laptops

Sensors



Characteristics of Edge Devices

Advantages

Privacy

Less Power Consumption

Portability

Cheaper

Disadvantages

Higher Latency

Constraints in RAM

Absence of GPU

Examples: Raspberry Pi, Nvidia Jetson, STM32



DL Optimization Methods for Edge

y = f(W*x + b)

x - Input Activation

y – Output Activation
W – Layer Weights
b – Bias
f() – Activation Function



DL Optimization Methods for Edge
y = f(W*x + b)

W * x requires O(NM) number of operations which is the major part of 
computation

+b requires O(M) as same as f() activation function

Roofline Model



Roofline Model

ANN

CNN

Artificial Neural Networks with Fully Connected layers are memory bound. By increasing 
weight re-use number of computations can be maximizable. Convolutional neural Networks are 
compute bound. Which means that to maximize the performance, number of FLOPs should be 
decreased



</Artificial Neural Network

=           X =           X

y       W       x nxy         W        nxx

Batch Size increase enables to multiply more than 1 input activation with the same input 
weight.

Batch Size of 1 Batch Size of n



</Convolutional Neural Networks

Re-use

Weights
Keeps the weights 
stationary and 

“slides” over the 
input Feature map

IFmap
Loads each input 

once and applies all 
filter weights



What about Energy?

Operation nJ per operation
Register 0.45

L1 0.88

L2 7.72

Mem w Prefetch 52.14

Mem w/o Prefetch 232.62

Write to Mem 62.1

Each access to memory requires 
100x more energy than instruction 
using only register.

Therefore, Data and Weight Re-use 
increases the efficiency in power-
critical applications.



Reality

Registers can seem faster and effective while the data stored at given time is quite 
small and management of the data becomes hefty work. For CNN weight reuse are more 

common depending on the parameters of the network and underlying hardware



</Convolutional Neural Networks
As we said, Convolutional Neural networks are mainly compute-bound due to the 
number of FLOPs for each iteration. Therefore, it is not enough to maximize the 
batch size and weight re-use, but we need to decrease the number of FLOPs.

Input 
Activation

Output 
Activation

Standard Convolution: K*K*Cin*Cout per location.

If we have 3x3 Kernel with 32 input channels to be extracted to 64 output 

channels:

3*3*32*64 = 18432

Which means we will have 18k operations for Standard Convolution!

64x3x3 Convolution



</Convolutional Neural Networks
In order to decrease amount of FLOPs in CNNs, Efficient Convolutional Neural 
Networks have been proposed with Depthwise Separable Convolutions. This concept 
has been firstly introduced in MobileNets which were focused to be used in edge 
device

Input 
Activation

Output 
Activation

DW: K*K*Cin per location.
PW: 1*1*Cin*Cout per location
Depthwise Seperable Convolutions: PW+DW

3*3*32 + 1*1*32*64 = 2336

Which is 7x less than Standard Convolutions

1x3x3 Convolution 64x1x1 ConvolutionIntermediate 
Activation
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Quantization

Quantization is a process of decrease in storage of variable by simply decreasing 
the precision. This compromise results with quantization error which has 
significancy depending on application.



Quantization

Smaller 
Float 

Formats
Custom 
Data 
Formats

Fixed-point 
Integers

Going from 32-bit format into 8-bit format gives us benefit from both performance 
and energy consumption in memory transfers. If underlying hardware supports, 
smaller data formats are possible to be used.



Quantization

Considering the underlying hardware in 
microcontrollers, it is common to see integer 
(fixed/dynamic precision) quantization types. 

The main reason is that most of the 
microcontrollers does not have floating point 
unit for float computation.



8-bit Fixed Point Integers

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01
1 0 0 1 0

Shared 
Exponent

Integer 
Component
(Mantissa)

Sign

This is the method to represent the 
float number with the help of shared 
exponent ∆:

∆ = 0.05

X1 (int representation) = 35
X2 (int representation) = 13

X1 (Actual value) = 35 * 0.05 = 1.75
X2 (Actual value) = 13 * 0.05 = 0.65



16 bit mini-float (half-precision)

They are generally used in servers

It keeps the floating-point architecture but 
decreases the size

Some hardware like modern GPUs can natively use 
this format.
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Pruning

Pruning

Weights 
Pruning 
Exploits the 

redundancy in Neural 
Networks

Activation 
Pruning

Small activations 
set to zero



When is it Efficient?

Making the variable 0 (zero) can decrease the storage size if file is stored 
in sparse format.

Sparse format does not decrease the amount of computation because it is 
decompressed during inference.

Node based structured pruning helps to decrease the model occupation in GPU 
and number of computation

{02}

{01}

{03}



</CSR and CSC format 
Compressed Sparse 

Row
Compressed Sparse 

Column

Inverted version of CSR, Matrices 
are scanned through the columns. 

Matrices are scanned through 
rows, while non-zero values and 
corresponding indexes are saved

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01

1 0 1 1 0 0 1 01
1 0 1 1 0 0 1 01
1 0 1 1 0 0 1 01
1 0 1 1 0 0 1 01
1 0 1 1 0 0 1 01
1 0 1 1 0 0 1 01



</Structured Pruning

5 2 5 0 00
0 1 7 0 00
3 0 0 4 22
4 0 0 0 08
0 1 1 8 30
2 0 0 0 03

Structured Pruning considers underlying 
hardware, removes groups of weight to speed up 
the access to the registers and save the space 
of operating memory.

Another approach is node-based pruning in which 
larger group of weights are removed.
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</Knowledge Distillation

Teacher Model
Student Model

Unlabelled Data

Pseudo-label Prediction

Transferring the knowledge to the smaller model
Adding natural regularization on overfitting 
Generalizing the errors well on unseen data
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</Why (not) cloud solutions?

● Readily scalable

● Out-of-box tools

● Lower maintenance cost

● (Usually) higher reliability

● Unmanaged cost increase

● Less customizable

● Higher latency

● Potential data privacy issues



</Why (not) on-premise solutions?

● More customizable

● Faster connections

● Easier to handle data privacy 
issues

● Initial cost
○ Starting cost
○ Scaling cost

● Higher maintenance cost

● Reliability issues

● Not every service is available 
on-premise
○ OpenAI API
○ GCD, Azure ML, etc.



</Best of two worlds

● Hybrid of cloud and on-premise 
solutions

● Can be both a transitionary or a 
long-term strategy

● Outsourcing ML infrastructure 
while maintaining more 
traditional components in-house

● Edge devices + cloud backend



</Federated learning
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Thank you

DevFest 2023
Baku, Azerbaijan
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